A Comprehensive Study on Deep Learning-Based Methods for Sign Language Recognition
نویسندگان
چکیده
In this paper, a comparative experimental assessment of computer vision-based methods for sign language recognition is conducted. By implementing the most recent deep neural network in field, thorough evaluation on multiple publicly available datasets performed. The aim present study to provide insights recognition, focusing mapping non-segmented video streams glosses. For task, two new sequence training criteria, known from fields speech and scene text are introduced. Furthermore, plethora pretraining schemes thoroughly discussed. Finally, RGB+D dataset Greek created. To best our knowledge, first where sentence gloss level annotations provided capture.
منابع مشابه
developing a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولStudy on Speed-limit Sign Recognition using Deep learning
In this article, we propose a method regarding the identification of traffic speed-limit signs from image using camera on vehicle. The speed-limit signs have circle shape and border line is red. The candidate’s images of speed-limit signs extracted by using different features. Then the images have been classified by using the CNN (Convolutional Neural Network) and provide a good result in patte...
متن کاملTowards Continuous Sign Language Recognition with Deep Learning
Humans communicate with each other using abstract signs and symbols. While the cooperation between humans and machines can be a powerful tool for solving complex or difficult tasks, the communication must be at the abstract enough level that is both natural to the humans and understandable to the machines. Our paper focuses on natural language and in particular on sign language recognition. The...
متن کاملDeep Language: a comprehensive deep learning approach to end-to-end language recognition
This work explores the use of various Deep Neural Network (DNN) architectures for an end-to-end language identification (LID) task. The approach has been proven to significantly improve the state-of-art in many domains include speech recognition, computer vision and genomics. As an end-to-end system, deep learning removes the burden of hand crafting the feature extraction is conventional approa...
متن کاملDeep Sign: Hybrid CNN-HMM for Continuous Sign Language Recognition
This paper introduces the end-to-end embedding of a CNN into a HMM, while interpreting the outputs of the CNN in a Bayesian fashion. The hybrid CNN-HMM combines strong discriminative abilities of CNNs with sequence modeling capabilities of HMMs. Most current approaches in the field of gesture and sign language recognition disregard the necessity of dealing with sequence data both for training a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Multimedia
سال: 2022
ISSN: ['1520-9210', '1941-0077']
DOI: https://doi.org/10.1109/tmm.2021.3070438